
Collision Filtering
Collision filtering is an act of informing the physics engine to ignore collisions 
between specific types of objects. This could either be an optimization to minimize 
physics processing activity, or an essential component of gameplay. Either way, 
the mechanism to implement this in Bullet is the same, and we will explore how to 
implement such a system in this chapter using groups and masks

Groups and masks
The code to implement collision filtering is absolutely trivial, but it requires a good 
amount of explanation before it can be fully appreciated and understood.

Continue from here using the Chapter8_CollisionFiltering 
project files.

When we call the addRigidBody() function on our world object, there is an 
overloaded version of the same function with two more parameters that we can input:

• A short representing the object's collision group
• A short representing the object's collision mask

Each object in our world can be a part of zero, one, or more collision groups. Groups 
could represent concepts such as players, power-ups, projectiles, enemies, and so 
on. Meanwhile, the collision mask indicates which groups this object should collide 
with. In this way, we can use collision filtering to generate an essential element 
of gameplay logic by preventing the player from being hit by their own weapon 
projectiles, or preventing enemies from being able to pick up power-ups.



Collision Filtering

[ 100 ]

Bullet treats the short values as a list of bit flags, and uses simple bitwise operations 
to perform tests on them. If bitwise operators and bitmasks sound scary or confusing, 
then this would be a good moment to break open your computer science manual 
of choice and do a little brush up on the subject. They are a commonly used tool in 
C++ programming. So common in fact, that we have already used them three times 
throughout this book in functions such as glutInitDisplayMode(), glutClear(), 
and our DebugDrawer class.

Bitmasks are used by Bullet for these operations because performing 
comparisons on them is absurdly fast and they use a minimal amount 
of data. With potentially thousands of comparisons to perform per 
simulation step, this is a very worthwhile optimization that has been 
built into Bullet.

Because the two values for group and mask are shorts, we have 2 bytes, or 16 bits, 
to work with. But, Bullet reserves one of these bits for internal usage, which gives 
us access to the remaining 15, however this should be more than enough groups for 
most situations.

The last thing to consider is that if we want two objects to collide with one another, 
then both of their masks must include the group of the opposing object. For example, 
if we want the players to collide with power-ups, we can set the player's mask to do 
so; but power-ups must also be flagged to collide with player's, or else the collisions 
will not occur. Remember this when attempting to use this feature in the future, 
because it is an easy thing to forget.

The BasicDemo application is becoming cluttered, so 
we have created a specific application to test collision 
filtering named CollisionFilteringDemo. Using 
this object, instead of BasicDemo, required a handful 
of changes to our main() function.

To implement collision filtering, we simply pass the two aforementioned shorts 
into our call to the addRigidBody() function. This merely requires a change in the 
parameters and the function calls of CreateGameObject(). Because it is so trivial, we 
won't show the whole source code here, but we will make a couple of relevant points:

enum CollisionGroups {
  COLGROUP_NONE = 0,
  COLGROUP_STATIC = 1 << 0,
  COLGROUP_BOX = 1 << 1,
  COLGROUP_SPHERE = 1 << 2
};



Chapter 8

[ 101 ]

This enum, found in BulletOpenGLApplication.h, defines the possible collision 
groups for our object. Each represents a different group and is represented by a value 
of 1, but bit shifted left by gradually increasing values of 2, 4, 8, 16, and so on. This is 
a simple pattern to ensure that each value consumes a unique bit. The same enum that 
defines the values for the groups is also used to determine each new object's collision 
mask. To set more than one group for an object's collision mask, we use the bitwise-
or operator, as follows:

COLGROUP_BOX | COLGROUP_STATIC

Passing this value as the object's mask makes it collide with any object flagged for 
either of these groups.

Defining linear and angular freedom
It's becoming increasingly common these days to see the games that are visually 3D, 
but all gameplay and physics occurs in only two dimensions. These types of games 
are typically referred to as 2.5D games. These are either attempts to bring a classic 
2D game back to life with modern 3D graphics, or a way to keep the simplicity of 2D 
gameplay, but give them more life and believability through advanced graphics. To 
achieve this, physics objects must only be able to move in the X and Y axes, and only 
able to rotate around the Z axis.

Restrictions of this kind can be applied to any rigid body object in Bullet by setting 
the linear or angular factor of a rigid body. Simply call the setLinearFactor() or 
setAngularFactor() functions on any rigid body, passing in a btVector3 that 
specifies which axes are allowed, and which are not. For instance, to restrict the 
movement of an object to behave as if it was a 2.5D game, we would call:

pBody->setLinearFactor(btVector3(1,1,0));
pBody->setAngularFactor(btVector3(0,0,1));

To demonstrate this feature, this chapter's source code sets the spheres to only move 
in the X - Y plane (up/down/left/right relative to our camera's starting position), 
while being constricted along the Z plane (they cannot move towards/away from 
the camera's starting position). Even if another object (such as a box we shoot with a 
right-click) collides with one of the spheres along the Z axis, it still cannot move in that 
direction. The following call restricts the linear motion of the sphere in such a fashion:

pSphere->GetRigidBody()->setLinearFactor(btVector3(1, 1, 0));

The CollisionFilteringDemo application creates 25 boxes and 25 spheres in a 
stacked 5 x 5 grid formation. It then configures both types of objects to collide with 
the ground plane, but also configures such that the boxes cannot collide with the 
spheres, and vice versa.



Collision Filtering

[ 102 ]

When we launch this application, we should observe two stacks of boxes and 
spheres, each occupying the same space without any collisions between them.  
There can be collisions only with the objects of the same shape. The following 
screenshot shows the collision filtering in effect:

Note that the default values for group and mask are set to -1 in the declaration of the 
CreateGameObject() function. If we remember our signed-integer representations, 
a value of -1 means every bit is set to 1. Thus, the default values for group and mask 
make the object a member of every group, and has a mask enabled for every group. 
This is the reason why the ground plane and our shootable boxes are able to collide 
with both the boxes and spheres.

Summary
We've explored the power and simplicity of Bullet's collision filtering system, 
and implemented it into our scene to avoid generating collisions between objects 
of different groups. This feature can be extended further to all kinds of useful 
situations, both for the sake of gameplay and for simulation optimization.

In the next chapter, we will explore one final and powerful feature of the Bullet 
library: Soft bodies!


